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STRAIN ENERGY OF DEFORMATION:

Betti Rayleigh Reciprocal Theorem:

The forces of the first system (F,, F,, F, ... F.) acting through the
corresponding displacements produced by the second system do the same
amount of work as done by a second system of forces (F’;, F’,, F'3, ...... F.
) acting through the corresponding displacement produced by the first

system of forces
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STRAIN ENERGY OF DEFORMATION:

Proof:

Consider two system of forces F;, F,, Fs, ..... F,and F'}, F',, F'5, ... F
acting on a linear elastic body. Both the systems have the same point of
application and the same directions. Let &;, d,, J;, ..... 05 be the
corresponding displacements caused by F,, F,, F5, ..... F, and &;, 9,, 3,

.....0,, be the corresponding displacements caused by F';, F’,, F's, ...... F,

Fp0,+F,0,+ F30;+...... F0,=F;(a;F; +a,,F, +asFs+ . a;F,)+
F,(ayF; + ayF, + a,5F3+ . aF,) +
F'5(azFy +a5,F, +agsFs+ az F,) +
+F (a,F, +a,F +asFs+ ... anFn)
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STRAIN ENERGY OF DEFORMATION:

- ’ ’ U U
= apF Fp + apFF +a,5F Fp o+ a;F.Fq +

7’ 7’ U U
321F1F 2 + aZZFZF 2 + az3F3 F 2 + ------ aannF 2 +

7 U 7 7
ayFF3+ agF, Fla+ agsF Fy+ as,F.F3 +

U U U
verrreenes aanl F nt an2F2 F nt an3F3 o annFn F n

7 7 U 4
anF Pt a,RF, +agFF g+ +a,F,F,+

ap, (F,Fy + FiF,) +ags(F3 F/y + FiFS) + a,, (F,F,+F.F,)
a,3 (F3F, + F, F'5) +a,,(F,F', + F)F )+ @y, (F F/+F5F)

+ ........ + an_l n (FnF'n.1+Fn-1F’n)

Using Maxwell’s theorem, a; = a;
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STRAIN ENERGY OF DEFORMATION:

7 7 7 7 —_ U U U 4
FLo +F, 0+ F38 5+ ... F,0,=F, (a;;F +a,F, +aF 5+ a; F.)
7 ’ 4 U
+ Fy(ay,Fy + ayFy + ayFs3+ . a,F') +
7 4 7 7
Fi(agF'y + ag,F, + agF 3+ s azF') + .
7 ’ ’ 7
+F (@, Fi+aF+asF s+ e anF'h)
- ’ ’ ’ ’
=apFFp+apF, Fp+aF s F+a a;F.Fi+
’ 7’ 7’ 7’
ayFy Fy+ aynF, Fo+ ansFs B+ aF, F +
’ ’ ) 7’
as F'; F3+ ag,F',) Fy+assFsFs+ asF, F3+
’ 7’ 7’ 7’
+a,F,F,+a,F,F ,+aF3F + ... aFnFn
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STRAIN ENERGY OF DEFORMATION:

aF Fy+ay,FF, +agFFy + . +anF Fnt
ap, (FF + FiF,) +a5(Fs F/y + FiF5) + .. a,, (F,F,+ F.F)
a,3 (F3F', + F, F'5) +a,,(F,F', + F,F )+ @y, (FF/+F5F)

+ ........ + an_l n (FnF'n.1+Fn-1F’n)

Fi0,#+F,0,+ F;05+...... F,0,=F, 0’ +F,0",+ F;8'5+...... F o
Thus the forces of the first system (F,, F,, Fs, ..... F.) acting through the
corresponding displacements produced by the second system do the same
amount of work as done by a second system of forces (F’;, F’,, F'5, ...... F

) acting through the corresponding displacement produced by the first

system of forces
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STRAIN ENERGY OF DEFORMATION:

FAQs:

1. Define Strain Energy and Complementary Strain Energy.

2. Derive expression for strain energy in case of: axial loading, shear stress,
bending and torsion.

3. State and prove reciprocal theorems
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ENERGY METHODS IN ELASTICITY:

Castiglano’s First Theorem:

If the strain energy U of a structure is expressed as a function of
generalized force F,; then, first partial derivative of U with respect any
one of the generalised force F, is equal to the corresponding

displacement ;
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ENERGY METHODS IN ELASTICITY:

Proof:
Strain energy stored in an elastic body is given by

U=2(Fi8; + F8; + F383+ oo +Fy8y)
1
= EFl(allFl + alez + a13F3 + ... .....+a1nFn)

1

+EF2(321F1 + azze + 323F3 + e +aann)
1

+EF3(331F1 + azF; + azgzF3 + . +ag,Fy)
1

+5Fn(an1F1 + anze + an3F3 + e +annFn)
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ENERGY METHODS IN ELASTICITY:

1 2 2 2 2
U= E (allFl + azzFZ + a33F3 + .. +annFn )
taFiFy + agsFiFs + oo+ ag Ko F,

EEEECTT + a(n_l)nF(n_l)Fn
In the above expressions F,, F,, .. are the generalized forces i.e.,
concentrated loads, moment or torques.

a;y, @15, A13,--.... are influence coefficients.

au
— = auFl + alez + a13F1 + - +alnFn
oF,
au au au
=8 — =8 —=§;
0F; 0F, 2 OF;
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ENERGY METHODS IN ELASTICITY:

The diagram shows a simple frame with two loads. Determine the deflection at both. The
flexural stiffness of both sections is 2 MNm?2,

Fy= 150 N
A 7y
) 0.5m A E
e g <
_— ¥
1c "”
F» =200 N

SECTION AB Measure the moment arm x from the free end.

M=F;x (xmeasured from the free end)

Fq 03 03 203

—-- 1 1 - F-

Fy U=—0o Mzdx—— | FIX jd IX dx

x 2EL | 2EI

L 273793 2 2
Fix F 0.3

U:—l _ :716 0
2EI| 3 o 2x2x10 3
24th January 2019 U=2.25x10° F1 Joules 11

My e MU

ENERGY METHODS IN ELASTICITY:

SECTION BC
B 0.3F;
‘ x
F

M=03F;+Fsx

0.5 0.5 0.5
2 2 1 2 2.2
Ut Ml =4 (0.3F, + Fox Jdx = F+(Fx +0‘6FFx}dx
2EI| Ii 1+F> I (F3x7) +(0.6FF;x)
0s 2 3 5705
1% F7x>  0.6FFy
U=— |I 09F2x +Fx2 +0. 6F1F2}n 0.09F2x +-22  JONT%
2EI 2ET 3 2 .
3.2 2
5 . )
o1 i 0.00r2 + L5 F2 | O6RE X05
2x2x10 3 2

U=11.25F|2x 1079 + 10.417F,2 x 10"+ 18.75 F|Fox 1079
The total strain energy is
U=11.25F12x109 + 10.417F,2 x109+ 18.75 F{ Fox1079 + 2.25 x10 9 F 2

U=13.5F12 x10"% + 10.417F72 x 109+ 18.75 F{Fp x 1079
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ENERGY METHODS IN ELASTICITY:

To find y carry out partial differentiation with respect to Fy.
yy =8U/3F; =27F; x 109 + 0+ 18.75 F; x 10

Insert the values of Fj and Fy and y; =7.8x 106 m

To find y; carry out partial differentiation with respect to F.

v, =0U/SF; = 0+ 20.834F, x 1079 +18.75F; x 1079
Insert the values of F and F> and y; =7x 100 m

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

Stiffness Coefficient k;;:
Stiffness Coefficient k; is defined as the force developed along F;

ati when a unit displacement §; is introduced keeping &;= 0.

Fi = K181 + Kj28;2 + Ki383 + -+ + K, 8,

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

Castiglano’s Second Theorem:

If the strain energy U of a structure is expressed as a function of
generalized displacement §; then, first partial derivative of U with
respect any one of the generalised displacement 6, is equal to the

corresponding generalised force F; .

au
05,

= F

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

Proof:
Strain energy stored in an elastic body is given by

U=1(F8; + F;8; + F83 4 oo 1F,8,)
U=2(F8;+ Fd, + F383+ ... +F,8,)
= %81(1(1181 + K8, + Ky383 4+ oo +kyn8y)
+%82(k2181 + Kpp 85 + Kp3s + oo +kpn8,)
+%83(k3181 + K328, + K383 + .. +K3n8,)
ot %sn(knlsl + K28, + Kuabs + e HRpn80)

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

1
U= E(kuasi2 + K228, + Kgg83” + o + Ry 8, 7)
+K128.8; + Ky38.83 + oo+ 21,8,8,

+K238,8;5 + Kpu8,8, + v+ 2,,8,8,

PR a(n_i)HS(n_-l)Sn
In the above expressions §,, d,, ... are the generalized displacements i.e.,
translations or rotations.

ki1, K15 Kq3,-..... are influence coefficients.

au
- = k1181 + k1282 + k1383 + . +k1n8n
068,
au . au . ou .
98, ! 95, ° s,
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ENERGY METHODS IN ELASTICITY:

Problem:
Three elastic members AD, BD and CD are connected by smooth pins as shown in fig.
All the members have same cross sectional area and are of same material. BD is 100

cms long and members AD and CD are each 200 cms long. What is the deflection

under load W.
_ 1 V3
Sinb = Z and Cos0 = =
(i}
] D 5,
~B
A
&
Wi
C
~
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ENERGY METHODS IN ELASTICITY:

Due to 61,
BD will not undergo any change in length.
AD will extend by ﬁ(g
2 1
. V3
CD will be compressed by 5,
2
Due to 6,,

BD will undergo extension by 6,.

1
AD and CD will get extended by 5682

V3 1
781"‘ 582

Total extension of BD, &g, = 8,

Total extension of AD, 8ap =

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

, 3 1
Total extension of CD, &, = - gﬁl + 58,

If ‘a’ is the cross sectional area of the members,

Stresses on each member are: E 3 5,
Cap = & )
g _ E AD ™ 290 ( 2011 5
€ E
%8D = 700 (82)
E V3 5,
Op=—(—28 _)
D 200( 2 1 + 2

Total Strain Energy, U = Upp + Ugp + Ucp  swrain em’fﬂ)’r“%"“

EZ (V3_ 8,\° ax200 EZ ax100
= 281+? X

= — | — 2
2007 28 1002 92X 3

2

E? V3 8, axz200
2002 2 2 2E
Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

aE
= m[6812 + 108,7]

According to Castiglano’s 2" theorem,

au 3aE _ 400W
=W w01 =W %1 = T
06, 400
au aE
— =0 =8, =0 =
a8, 80 2 02 0
24th January 2019 Presented to S4 ME students of RSET 2
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ENERGY METHODS IN ELASTICITY:

Principle of Virtual Work:

If a structure is in equilibrium and remains in equilibrium, while it is
subjected to a virtual distortion, the external virtual work done 6W is
equal to the internal virtual work 6U done by the internal stresses.

The virtual distortion given must be satisfying the constraint conditions
i.e., the displacement should satisfy the displacement boundary

condition.

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

Problem:

Solve the above problem using principle of Virtual Work.

1 V3
LA inf = — =—
N Sind 2 and Cos6 2

AN
‘/
L=

Consider a virtual displacement &, along the direction of applied force W.

Stresses on various members are

E V3 E V3

o — ogp =0 Ocp = 5505 01
AD T 5502 91 BD 200 2
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ENERGY METHODS IN ELASTICITY:

3
Workdone by Opp = 9AD- £AD x Volume _ E ‘/_8 AL = 3AE 512

700 2 01X L XA 800
V3
Vol B B Z AL JBE,
Workdone by 6. = cp: &cp x Volume = 50— 8, X ==~ ~ =g0o™
. . . 3AE 3AE
Total internal virtual workdone by internal stresses, U = — 8,2 + — 8,
800 800
S0 = 3AE 5.2
400 *
External Virtual Workdone, W = W8,
3AE 400W
oo =65, = W8, 6, = 4
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ENERGY METHODS IN ELASTICITY:

Principle of Minimum Potential Energy:
Statement: Of all the displacement fields which satisfies the prescribed constraint
conditions, the correct state is that which makes the total potential energy of the
structure a minimum.
Total Potential Energy, II = U+ V — W
Where, U - Elastic Energy stored in the deformed structure.

V — Negative of work done by external forces.

W, — Work done by conservative forces.

When W =0, according to principle of minimum potential energy,

SlI=8U+V)=0

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

If Nis a function of 6,, &,, &5 ..... 5, then,

o= s+ gq,..+ s
3q, 17, 22T g, O
' Mo _ o oll ol
8M=0 gives, 5 -8q; =0, E&b:o ---------- aﬁ%=0
n

Constraint conditions means displacements that can satisfy the displacement

boundary conditions.

Presented to S4 ME students of RSET 2
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ENERGY METHODS IN ELASTICITY:

Problem:

Solve the above problem using principle of Virtual Work.

Sin® = % and Cosb = éj
(]
< D &
~|B
-
&
Wi
C
-
Let the displacements along vertical and horizontal directions be §,and 6,
ak
Total Strain E =——[68,% + 108,°
otal Strain Energy 1600[ i+ 2]

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

Principle of Minimum Complementary Energy:

Of all the stress state which satisfies equations of equilibrium, the correct state is that
which makes the total complementary energy of the structure a minimum.

Strain Energy density: U =f edo
0

Ox
€1
Complimentary Strain Energy Density: U* = f ode
Complementary, 0
R Stress
! oL_______

do) 1

E i

T 1

1

1

(o) 1

I

1

1

[ .

Strain energy: !

€ de —Strain—

Stress Strain Curve for linear material g\-eg Strain Curve for non linear material

Presented to S4 ME students of RSET
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ENERGY METHODS IN ELASTICITY:

FAQs:

1. Define Strain Energy and Complementary Strain Energy.

2. Derive expression for strain energy in case of: axial loading, shear stress,
bending and torsion.

3. State the following theorems: Reciprocal theorems, Castiglanos Theorems,
Principle of Virtual Work, Principle of Minimum Potential Energy & Principle
of minimum complementary strain energy

4. State and prove reciprocal theorems

5. State and prove Castiglanos theorems.

Presented to S4 ME students of RSET
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TORSION OF NON CIRCULAR SHAFTS
ST. VENANT’S METHOD
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TORSION OF NON-CIRCULAR BARS:

Torsion of non-circular bars:

1. Saint Venant’s theory - solutions for circular and elliptical cross-

sections
2. Prandtle’s method - membrane analogy

3. Torsion of thin walled open and closed sections- shear flow

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

A circular bar subjected to Torque
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TORSION OF NON-CIRCULAR BARS:

Torsion of Circular Shafts:

T_GG
r 1

—1 =

T— Applied Torque in N-m.
J—Polar Moment of Inertia m4.

T— Shear Stress at a radius r in
N/m?2.

G — Modulus of Rigidity. in N/m?2.

8 — Angular Twist in Radians.

| — length considered in m.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Torsion of Circular Shafts:

Assumptions:

1. The materiel is homogenous i.e of uniform elastic properties
exists throughout the material.

2. The material is elastic, follows Hook's law, with shear stress
proportional to shear strain.

. The stress does not exceed the elastic limit.
. The circular section remains circular

. Cross section remain plane.

O v A~ W

. Cross section rotate as if rigid i.e. every diameter rotates
through the same angle.

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 34
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TORSION OF NON-CIRCULAR BARS:

Torsion of Non - Circular Shafts:

In the case of circular shafts subjected to torsion, the circular section
remains circular and Cross section remain plane. Cross section rotate
as if rigid i.e. every diameter rotates through the same angle. Any
point in the cross section will move along the x and y direction but
not along z direction.

In the case of non — circular prismatic bars subjected to torsion, the
points in the cross section will get displaced along x, y and z
direction. This out of plane displacement along the axial direction of

the bar is called warping.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Torsion of Non - Circular Shafts:

Original Grid

HEETIETTIIY

Deforme ri(lv

-

A circular bar subjected to Torque

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Torsion of Non - Circular Shafts:

A Non - circular bar subjected to Torque

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 37

TORSION OF NON-CIRCULAR BARS:

St. Venant’s Inverse Method:

Y X
! /
AN
. \ .7
1 1 T
2N P
i
N o e oo e o e i
;
1
1
Z PI
T /
/
/
/
v ’
L] & [P
-~ 1Plxy)
Fig_a: Prismatic _bar under torsion and o ‘}t? i XB
geometry of deformation - / >¥X
0.z |[«—u—>
Presented to S4 ME stuuents or kse |
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TORSION OF NON-CIRCULAR BARS:

Consider the torsion of a prismatic bar of any cross section twisted
by couples at the ends. The cross section . The cross section rotates
about the axis and the twist per unit length is 0. Section at a
distance z from the fixed end will rotate through an angle 6.z as
shown in fig.a.

The displacement components along x & y directions are:

u=-r.0.2.5inB and v=r.0.z.CosP

where, y X
R = 2 cosf = -
sin3 = . p r

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

In addition to these x and y displacements the point P will undergo a

displacement w in the z direction. This is called warping.

The z displacement is a function of x and y and is independent of z.

This means that warping is the same for all normal cross sections.
u= -0.yz — q w= 0.y(x,y) — @
v=68.x.2 —— (2

0* - is the angle twist angle at a length | from the fixed end.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

__du __du av

Exx = ax Yxy = d_y Ox

) ov aw

Eyy - ay Jz dy
e = aw __du ow
ZZ dz Yxz = E E

Substituting for u, vand w we get,

Exx = E&yy T Ezz = Yxy T 0

Yyz = 6(%+X) — @
Yxz = e(%_Y) — )

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

From the Hooke's law,

Oux = Opy = 0y = Ty =0

Ty, = Gy, = GO (%+ X) — (8)
A

Txz GYXZ = GO (; - Y) (7)

These components of stresses should follow the equilibrium

equations. 9oy | Oty n i _
ox oy 0z

6txy t%i 6‘[zy -0
ox ay 0z
ot at 00,

— Xz 2L Z_9
ox ay 0z

24th January 2019 Presented to S4 ME students of RSET a2
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TORSION OF NON-CIRCULAR BARS:

The first two equations are identically satisfied. From the third

equation we get. 2 2
Go (24 2Y)

%2 dy?
o2y 9%y
¥ 29 _ 9
ax? + dy?

The warping function | satisfies the Laplace equation everywhere in

the region R.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

/1
NIV

N

—

I

X

Fig (b): Cross section of the bar and the boundary conditions

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

F,, F, anf F, are the components of stress on a plane with outward

normal n. At a point P on the surface the boundary condition has to

be followed. Ny Oxx + l’l Tx + N;Tyz = Fx
Ny Tyy + nycryy + n,ty, = Fy
NyTyz + NyTy, + N,0,, = F,

In this case, no forces act on the boundary,
i.e., Fx=Fy=Fz=0

The first two equs. are identically satisfied and the third equ gives

GO (57— v )ne+ GO (524 x )ny =0

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:
From the figure (b) , As = ds; Ay = dy; Ax = dx.

d
. = Cos(n,x) = =

n, = Cos(n,y) = ——

Substituting these values in the above equs.
o _ dy _ (v & _ 4
(Bx y)ds (6y+X)dS_O

Thus the torsion problem reduces to finding a function ¢ which

satisfies

1. equlintheregionR
2. equllonthe boundarysS.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

The moment due to the stresses as given by equ 6 & 7 must be
equal to the applied torque. The resultant forces in the x and y
directions should vanish.

Referring to fig b, taking moments

Applied torque,
Substituting for the stresses from equ 6 and equ 7, we get

T= [f, (TyeX — Tey) dx.dy

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

T=GJ].O ————

Jis called St. Venant’s Torsional Constant

GlJ is called Torsional Rigidity.

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Resultant Forces in the x direction vanishes
I[q Toxdx.dy = GO [, (—— y) dx. dy

oy e e (3245

= 5 G+ S E+)
Substituting the above in equ a we get,

[l o dx.dy = GO [, = [x(%£— y)]+
%[X (%+x)].dx.dy

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Resultant Forces in the x direction vanishes.

[fy T dxdy =GO [f, (50— y).dxdy ——— (a)
oy _ an 0%y, 9%y
E_y_ —y+X (dx2+6y2)

- 2 (2 )] 2l &)

Substituting the above in equ (a) we get,

ffR T, dx. dy = GﬂffR % [ (%— y)]+ éy[ (dw x)].dx.dy

Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Using Gauss Theorem, the above surface integral can be converted

into a line integral

J[q Tax-dx.dy = Gﬁjﬁx{(g—l}l{!— ) n, + (g—ij+x) ny} dxdy

The expression within the curly braces is equal to zero according to

ff T,-dx.dy =0
R

Similarly we can prove that ffR T,y dx.dy =0

equl.i.e.,

0P(xy) | 0Q(xy) _
[-[fR ( ox + dy )dXdy_£ P(le)nx + Q(XrY)nyJ
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TORSION OF NON-CIRCULAR BARS:

Summary of St. Venants Method

o2y | 02y
ot T ogz =0
W _ dy _ (v x _ 6
(ax y)ds (6y+X)dS_0

oy oy
1= Jf (x2+ y2+x.§ — y.a) dx. dy
T=GJ]O8 ———

Ty, = Gsz = GO (%-l— X) Tyz = GYx, = GO (% - Y)

u= —6.y.z v= 08.X.7 w= 0.Y(x,y)
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TORSION OF NON-CIRCULAR BARS:

Torsion of Circular Bars

The simplest solution to Laplace equ. Is
1y = Constant, C

The boundary condition equ. Il becomes,
dy dx

—_y— — X — =
yds ds

x? + y? = Constant
Where x and y are the coordinates at any point in the boundary.

Hence the boundary is a circle.
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TORSION OF NON-CIRCULAR BARS:

From equ. Ill,
J= [f, x*+ y?) dxdy

The above integral is the polar moment of inertia of an area

bounded by a circle.

Hence, T= Glpe
Where, |, is the polar moment of inertia of the circle w.r.t its centre.
T
"~ Glp
T.C
= w=608C= —
w= 6y Glp
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TORSION OF NON-CIRCULAR BARS:

Since all the terms on the right hand side are constant for a given

torque, given material and a given cross section. w is a constant at

all cross sections. Since the centre has zero w, the value of w at

every point in the cross section is zero. Thus the cross section does

not warp.

The shear stresses are given by

Tx
Tyz = GOBx = E
Ty
Ty, = —Gey — _E
is gi 2 _ . 2 2
Theresultant stressis givenby 72 — ¢ 2 4 T,
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TORSION OF NON-CIRCULAR BARS:

2 _ TE(*4yH)
T = 2
Ip

(x% +y?) = r2

i.e., Tr

Ip

Direction of the resultant stress is given by

T GOx
tana = £ tana = —co
Txz y
X
tana = —-
y
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TORSION OF NON-CIRCULAR BARS:

Torsion of Bars with Elliptical Sections:

%y | a2y

§+W:O 1)

v _ dy _ (9w dax _ (1)
(ax y)ds (ay+x)ds_0
T=G.J.96 (i)
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TORSION OF NON-CIRCULAR BARS:

e W=Ay g

This satisfies the Laplace equation.
d d 0 dx
(_‘IJ_ ) (_¢+ X)X
Jx ds ay ds
Substituting for ), the above equ. becomes

d dx
(Ay—y) oo~ (Ax+x) =0

_ Y _ dx _
y(A 1)ds X(A-l-l)dS—O
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TORSION OF NON-CIRCULAR BARS:
(A+1D2xT-2y(A-1DIL=0

= [(A+Dx*—(A-Dy?| =0

(A+1)x%? - (A—1)y? = Constant ———— (2)

The above equation is of the form

2
=+ L — @)

Comparing equs. 2 and 3 we get
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TORSION OF NON-CIRCULAR BARS:

a? _ 1-A A= b2- al (4)
b2 = 1+A b2+ a2

b2 o2
V= 02Xy — 6

This represents the warping function for an elliptical bar with semi

axis a & b under torsion.
J = ffR (x2 + y? + Ax? — Ay?) dxdy

= (A+1) [, x*dxdy + (1-A) [[ y?dxdy

=A+DL,+ 1-AL, — ©
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TORSION OF NON-CIRCULAR BARS:

For an Elliptical area,

[ _ m’ _ mab’®
y - 4 IX - 4

Substituting for Ix, ly and A in the expression for J we get,

| = ma®h? B V)]
a%+ b?
Torque,
T = GO
ma®b?

T=Go5—

_ Talpt (g
b= G ma3b3
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TORSION OF NON-CIRCULAR BARS:
T,, = GO (:—1’+ x)

Substituting for 8 from equ 2 and y from equ. 5

aZ+ b2 /bZ-a?
Ty =T (e T 1)%
YZ T madh
oy
Tx = GO (& — )
2Ty
TZX = “abS (10)
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TORSION OF NON-CIRCULAR BARS:

Resultant Stress

T= [1,%+ TZX2]1/2
= bt +aty?]

Expression for maximum Shear Stress:

2 2
y

bZ

X

Zt =1
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TORSION OF NON-CIRCULAR BARS:

substituting for x in the expression for T we get

1= ——[aZb* + a? (a%— bz)yz]l/2

na3b3

Since all the terms within the square brackets are positive, T will be
maximum when y is maximum i.e., when y =b.

Thus t,,,, occurs at the ends of the minor axis

2T ap2n\1/2 2T

Tmax = m(a b ) - mab?
Axial Displacement, _ oy - T(b? — 32)X
= Tnatbic Y
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TORSION OF NON-CIRCULAR BARS:

Depressed
(U.is negative)

|e—— & —>|

Elevated
(U.is positive)

Cross section of an Elliptical bar showing Contour Lines of constant U,
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TORSION OF NON-CIRCULAR BARS:

Contour lines giving w constant are hyperbolas. If the ends are free

to warp, there are no normal stresses.

If one end is fixed, the warping is prevented at that end and
consequently stresses are induced. These normal stresses are called

torsion induced warping stresses.
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